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Abstract. We propose a way of creating product maps with self-organizing
maps (SOMs) for purchase decision making. We previously proposed a way of
purchase decision support using SOMs and the Analytic Hierarchy Process
(AHP). We provided several class boundaries, which divided the input features
into several classes before creating self-organizing product maps. Because the
number of classes and their boundaries depended on the person classifying the
classes, the product maps were not always the same. In this paper, we first
provide two class boundaries, which divide the range between the maximum
and minimum of an input feature value into three equal parts. Second, we create
self-organizing product maps using the classified data inputs. We applied our
way to five kinds of products and confirmed its effectiveness.
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1 Introduction

As reported by [Kotler 2002], marketing researchers have developed a stages model
of the buying decision process. The consumer passes through five stages: problem
recognition, information search, evaluation of alternatives, purchase decision, and
postpurchase behavior. Five successive sets are involved in the consumer decision
making. The first set is the total set of brands available to the consumer. The
individual consumer knows only a subset of these brands (awareness set). Some
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brands meet the initial buying criteria (consideration set). As the person gathers more
information, only a few brands will remain as strong contenders (choice set). The
brands in the choice set might all be acceptable. The person makes a final choice from
this set. Several intelligent decision support systems (DSSs) have been proposed to
solve the variety of problems related to making decisions (e.g., [Park 2002], [Riordan
2002], [Kohara 2002], [Ha 2003], [Walle 2003], [Suka 2003], [Kohara 2006]).

We previously proposed a way of purchase decision support [Kohara 2006] using
self-organizing maps (SOMs) [Kohonen 1995] and the Analytic Hierarchy Process
(AHP) [Saaty1980]. First, we divided many products (total set) into several clusters
using SOM. Second, we selected some alternatives (choice set) using the product
maps. Finally, we made a final choice from the alternatives using AHP. As an
example of real-world applications, we applied our way to the problem of buying a
personal computer (PC). We considered 120 kinds of notebook PCs sold in Japan in
June 2004. We clustered these PCs using the following features: CPU speed (GHz),
main memory capacity (MB), HDD storage capacity (GB), weight (kg), price (yen),
battery life (hours), and so on. We used these features in two ways: continuous (or
original) and classified data input. For classifying the data of CPU speed, we divided
the CPUs into three classes: under 1, over 1 to 2, and over 2 GHz. For classifying the
data of the main memory capacity, we divided the capacities into two classes: 256 and
512 MB. For classifying the data of the HDD storage capacity, we divided the storage
capacity into three classes: under 40, over 40 to 60, and over 60 GB. For classifying
the data of weight, we divided the weight into five classes: under 1, over 1 to 2, over 2
to 3, over 3 to 4, and over 4 kg. For classifying the data of price, we divided the price
into six classes: under 100, over 100 to 150, over 150 to 200, over 200 to 250, over
250 to 300, and over 300 thousand yen. For classifying the data of battery life, we
divided the life into six classes: under 1, over 1 to 2, over 2 to 3, over 3 to 4, over 4 to
5, and over 5 hours. We inputted the data into SOM and created PC maps using SOM-
Ward clustering of Viscovery SOMine 4.0 software. SOM-Ward clustering is a two-
level clustering approach that combines the SOM and Ward’s clustering algorithm
([Vesanto 2000], [Yao 2010]). Figures 1 and 2 show self-organizing map and an
example of component map of PCs with classified data inputs, respectively. Figures 3
and 4 show self-organizing map and an example of component map of PCs with
continuous (or original) data inputs, respectively. There were five clusters in Figure 1.
When inspecting component maps, the feature of each cluster is clear. For example,
when inspecting “under 1 GHz (1-GHz)” component map (see Figure 2), we
understand that one of the features of Cluster 5 is that CPU speed is under 1 GHz. In
Figure 2, originally red color (here, black) neurons correspond to under 1 GHz class
and originally blue color (here, dark grey) neurons correspond to the other class.

There were four clusters in Figure 3. In CPU (GHz) component map of Figure 4,
originally red (here, black) neurons correspond to 2.6 and more GHz and originally
blue (here, dark grey) neurons correspond to 0.9 GHz CPU speed. Originally green
and yellow (here, light grey) neurons correspond to intermediate values of CPU
speed. When inspecting CPU component map of Figure 4, the feature of each cluster
is not clear. So, classified data input is better than continuous (or original) data input
for clustering PCs. From now, we used classified data input only. We inspected every
component map and understand that features of Clusters 1 to 5 are as in Table 1.
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Fig. 1. Self-organizing map of PCs in 2004 with classified data inputs
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Fig. 2. Component maps of PCs in 2004 with classified data inputs
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Fig. 3. Self-organizing map of PCs in 2004 with continuous data inputs
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Table 1. Main features of PCs in 2004 in each cluster with classified data inputs.

Features

Main feature

Cluster 1 | 1to 2 GHz (CPU), 40 to 60 GB (HDD), High performance
3 to 4 Kg (weight), 150 to 200 thousand yen
(price)
Cluster 2 | under 40 GB (HDD), 256 MB (main memory), | Low performance
100 to 150 thousand yen (price) and low price
Cluster 3 | over 60 GB (HDD), 512 MB (main memory), Highest performance
over 200 thousand yen (price) and high price
Cluster 4 | 1to 2 Kg (weight), over 4 hours (battery life) High mobility
Cluster 5 | under 1 GHz (CPU), under 1 Kg (weight), Small size

150 to 200 thousand yen (price)
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Previously [Kohara 2006], we provided several class boundaries which divide
input features into several classes. Because the number of classes and their boundaries
depended on a person, the product maps were not always the same. In this paper, we
first provide two class boundaries that divide the range between the maximum and
minimum of an input feature value into three equal parts. Second, we create self-
organizing product maps using the classified data inputs. We applied our way to five
kinds of products (personal computers, digital cameras, automobiles, liquid crystal
televisions and electronic dictionaries) and confirmed its effectiveness.

2 Creating PC Maps with SOM

The SOM algorithm is based on unsupervised, competitive learning [Kohonen 1995].
It provides a topology preserving mapping from the high dimensional space to map
units. Map units, or neurons, usually form a two-dimensional lattice and thus the
mapping is a mapping from high dimensional space onto a plane. The property of
topology preserving means that the mapping preserves the relative distance between
the points. Points that are near each other in the input space are mapped to nearby
map units in the SOM. The SOM can thus serve as a cluster analyzing tool of high-
dimensional data.

When we create self-organizing product maps with classified data inputs, we input
1 to the SOM if an input feature value belongs to the class. Otherwise, we input 0 to
the SOM. Here, we propose a way to provide two class boundaries. We decided that
the number of classes is generally three: small, middle and large. We provide two
points that divide the range between the maximum (max) and minimum (min) of an
input feature value into three equal parts. Two points (1/3 and 2/3 points) are
calculated as follows.

1/3 point: min + (max — min)/3, 2/3 point: min + 2(max — min)/3

When we decide the max value, we ignore product data with an extremely large
value (over 1.5 times the value of the 90% point) to avoid the influence of an outlier.
This classification way does not mean that we remove the product data when we
create self-organizing product maps.

Table 2. 1/3 and 2/3 points of PC features.

Minimum 1/3 point 2/3 point Maximum
CPU speed (GHz) 1.06 1.37 1.69 2
Main memory (MB) 512 683 853 1024
HDD storage (GB) 60 147 233 320
Weight (kg) 0.898 2.232 3.566 4.9
Battery life (hours) 0.9 5.6 10.3 15
Price (yen) 108,000 188,667 269,333 350,000
Monitor size (inch) 10.4 12.6 14.8 17
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We considered 74 kinds of notebook PCs sold in Japan in 2006. We clustered these
PCs according to the following features: CPU speed (GHz), main memory capacity
(MB), HDD storage capacity (GB), weight (kg), price (yen), battery life (hours), and
so on. For example, two class boundaries of CPU speed (GHz) are shown in Figure 5.
The max and min are 2 and 1.06 GHz, respectively, and the 1/3 and 2/3 points are
1.37 and 1.69 GHz, respectively. Therefore, for the classified data of CPU speed, we
divided the data into three classes: under 1.37, 1.38 to 1.68, and over 1.69 GHz. The
1/3 and 2/3 points of the PC features are shown in Table 2. We did not ignore any
data to assign the 1/3 and 2/3 points of all PC features.
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Fig. 6. Self-organizing map of PCs in 2006 with our classified data inputs.

We input each classified data to SOM and created PC maps in 2006 (Figure 6).
Figure 6 shows five clusters: P1 to P5. We decided empirically that the number of
clusters is around five. We adjusted the number depending on the resulting map.
Examples of the component maps are shown in Figure 7. A component map shows
each component value of the product map. The upper three maps of Figure 7
correspond to weight: under 2.232 kg, 2.233 to 3.565 kg and over 3.566 kg. In the
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“under 2.232 kg” component map, the originally red (here, black) neurons correspond
to the under 2.232 kg class and the originally blue (here, dark gray) neurons
correspond to the other class. Weight value of cluster P2 is under 2.232. The lower
three maps correspond to battery life: under 5.6 hours, 5.7 to 10.2 hours and over 10.3
hours. “5.7 to 10.2 hours” and “10.3 hours” component maps cover cluster P2.
Battery life value of cluster P2 is over 5.6 ours. When inspecting these component
maps, we understand that the features of cluster P2 are light weight (under 2.232 kg)
and long battery life (over 5.6 hours). Therefore, maobile PCs belong to cluster P2. We
inspected every component map to understand that the features of PCs in clusters P1
to P5 are as shown in Table 3. Then, we examined whether every PC in each cluster
exactly corresponds to the features, one by one. In Table 3, the underlined features are
indispensable and more than 50% of the other features are necessary to judge that a
PC exactly corresponds to the feature. For example, we judge a PC in cluster P2 as
exactly mobile when its weight is under 2.232 kg and its battery life is over 5.6 hours.
We judge a PC in cluster P4 as having low performance and low price when its price
is under 188,667 yen and its main memory size is under 683 MB or its HDD size is
under 147 GB. We judge a PC in cluster P1 as having high CPU speed and heavy
weight when its CPU speed is over 1.38 GHz and its weight is over 2.233 kg. The
accuracy of each cluster is also shown in Table 3. The total accuracy is 95.9%.

Table 3. Main features of PCs in 2006 in each cluster.

Cluster # Features Main feature Accuracy

(# of products)

Cluster P1 (25) | over 1.38 GHz (CPU), High CPU speed 25/25
over 2.233 kg (weight) and heavy weight

Cluster P2 (18) | under 2.232 kg (weight), High mobility 18/18
over 5.6 hours (battery life)

Cluster P3 (13) | over 1.38 GHz (CPU), High performance 11/13

over 853 MB (main memory),
over 148 GB (HDD),
over 14.8 inches (monitor size)

Cluster P4 (15) | under 683 MB (main memory), | Low performance, 14/15
under 147 GB (HDD), low price
under 188,667 yen (price)

Cluster P5 (3) over 1.69 GHz (CPU), Highest erformance 3/3

over 853 MB (main memory), and high price
over 269,333 yen (price)

Total (74) 71/74 = 95.9%
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Fig. 7. Examples of component maps of PCs in 2006 with our classified data inputs.

3 Applying Our Way to Other Products

We applied our way to other products sold in Japan: 123 digital cameras in 2006, 142
automobiles in 2006, 60 liquid crystal TVs in 2006, 67 electronic dictionaries in 2008
and 86 recent PCs in 2009 (Windows 7 Home Premium). When deciding the max
value, we ignored a total of 0.8% of the product data, which was data containing an
extremely large value (over 1.5 times the value of the 90% point), as shown in Table
4. Self-organizing product maps are shown in Figures 8 to 12. The main features and
accuracy are shown in Tables 5 to 9, where the underlined features are indispensable
and more than half of the other features are necessary. The total accuracy is 97.6% for
digital cameras, 95.8% for automobiles, 95.0% for liquid crystal TVs, 94.0% for
electronic dictionaries and 96.5% for recent PCs. Therefore, we confirmed the
effectiveness of our way.

Table 4. Percentage of ignored product data when deciding the max value.

Product # of product data | # of ignored data | 9% of ignored data
PCs in 2006 518 0 0
Digital cameras 882 11 1.2
Automobiles 568 8 1.4
Liquid crystal TVs 240 1 0.4
Electronic 335 2 0.6
dictionaries

PCs in 2009 602 4 0.7

Total 3,145 26 0.8

# of product data = (number of products) times (number of continuous features)
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Fig. 8. Self-organizing map of digital cameras in 2006 with our classified data inputs.
Table 5. Main features of digital cameras in 2006 in each cluster.
Cluster # Features Main feature Accuracy
(# of products)
Cluster D1 (34) | over 5,430 thousand (# of pixels) | Large number 34/34
of pixels
Cluster D2 (36) | under 2.5 inch (monitor size), Small size and 36/36
under 221.3 g (weight) light weight
Cluster D3 (17) | under 5,430 thousand Small number 17/17
(# of pixels), of pixels,
over 221.3 g (weight) heavy weight
Cluster D4 (30) | under 29,733 yen (price) Low price 29/30
Cluster D5 (9) over 10 times (optical zoom) 10 times 7/9
optical zoom
Total (126) 123/126 = 97.6%

Table 6. Main features of automobiles in 2006 in each cluster.

Cluster # Features Main feature Accuracy
(# of products)
Cluster A1 (66) | under 2,205,000 yen (price), Low price, 62/66
under 1.437 t (weight), light weight
under 1,607 cc (emissions) and low emissions
Cluster A2 (31) | 1.4381t02.172 t (weight), Middle weight, 31/31
1,608 to 2,552 cc (emissions), | middle emissions,
under 13.0 km/I (efficiency) fuel-inefficient
Cluster A3 (23) | over 13.0 km/I (efficiency) Fuel-efficient 22/23
Cluster A4 (22) | over 2,205,000 yen (price) High price 21/22
Total (142) 136/142 = 95.8%
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Fig. 9. Self-organizing map of automobiles in 2006 with our classified data inputs.
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Fig. 10. Self-organizing map of liquid crystal TVs in 2006 with our classified data inputs.

Table 7. Main features of liquid crystal TVs in 2006 in each cluster.

Cluster # Features Main feature Accuracy

(# of products)

Cluster L1 (16) over 39 inches (monitor), Largest size and 16/16
over 232 W (power) high power consumption

Cluster L2 (17) 27 to 38 inches (monitor), Middle size and middle 15/17
137 to 231 W (power) power consumption

Cluster L3 (13) under 26 inches (monitor), Small size and 12/13
under 136 W (power) low power consumption

Cluster L4 (12) under 162,917 yen (price), Low price and middle 12/12
137 to 231 W (power) power consumption

Cluster L5 (2) under 162,918 yen (price), Low price, 2/2

under 27 inches (monitor),
under 137 W (power)

smallest size and
low power consumption

Total (142)

57/60 = 95.0%




Table 8. Main features of electronic dictionaries in 2008 in each cluster.
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Cluster # Features Main feature Accuracy

(# of products)

Cluster E1 (19) | 18,581 to 32,538 yen (price), Middle price, 19/19
196 to 277 g (weight), middle weight,
over 4.93 inches (monitor), large size,
under 37 (dictionaries) few dictionaries

Cluster E2 (20) | over 22,550 yen (price), High price and 17/20
over 4.93 inches (monitor) large size

Cluster E3 (7) under 4.37 inches (monitor) Small size 7/7

Cluster E4 (7) under 18,580 yen (price), Low price and 3/4
4.38 t0 4.92 inches (monitor) | middle size

Cluster E5 (8) over 4.93 inches (monitor), Large size and 8/8
over 68 (dictionaries), many dictionaries

Cluster E6 (9) under 18,580 yen (price), Low price, 9/9

under 4.37 inches (monitor),
under 37 (dictionaries)

small size and
few dictionaries

Total (67)

63/67 =94.0%
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Fig. 11. Self-organizing map of electronic dictionaries in 2008 with our classified data inputs.
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Table 9. Main features of PCs in 2009 in each cluster.

Cluster # Features Main feature Accuracy
(# of products)
Cluster N1 (24) | 1.74 to 2.26 GHz (CPU), Middle performance, 24/24
248 to 372 GB (HDD), middle weight
2.34 to 3.46 kg (weight)
Cluster N2 (25) | under 1.73 GHz (CPU), Low performance, 25/25
under 2.33 kg (weight), light weight,
under 99,959 yen (price) low price
Cluster N3 (21) | over 2.27 GHz (CPU), High performance 20/21
over 3 GB (main memory)
Cluster N4 (11) | over 5.0 hours (battery life), | High mobility 10/11
under 2.33 kg (weight)
Cluster N5 (5) over 2.27 GHz (CPU), Highest performance 4/5
over 3 GB (main memory), and high price
over 15.6 inches (monitor),
over 154,158 yen (price),
Blu-ray drive
Total (86) 83/86 = 96.5%
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Fig. 12. Self-organizing map of PCs in 2009 with our classified data inputs.

4 Purchase Decision Making with AHP

AHP is a multi-criteria decision method that uses hierarchical structures to represent a
problem and to develop priorities for alternatives based on the user. [Saaty 1980] has
shown that weighting activities in multi-criteria decision making can be effectively
dealt with via hierarchical structuring and pairwise comparisons. Pairwise
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comparisons are based on forming a judgment between two particular elements rather
than attempting to prioritize an entire list of elements. There are five types of AHP:
relative measurement, absolute measurement, inner dependence, outer dependence
and inner-outer dependence [Saaty 1980]. There are two types of ANP (Analytic
Network Process): feedback system and series system [Saaty 1996]. We can choose
an appropriate type of AHP or ANP according to the property of a problem.
Therefore, we choose AHP for decision making. The AHP scales of pairwise
comparisons are shown in Table 10.

Table 10. The AHP scales for pairwise comparisons.

Intensity of importance | Definition and explanation
Equal importance
Moderate importance
Essential or strong importance
Demonstrated importance
9 Extreme importance
2,4,6,8 Intermediate values between the two adjacent
judgments when compromise is needed.

~NOoO|Ww(F-

Buying personal computer problem

Price Mobilitv Performance Design
| | I ]

| l | |

PC1 PC 2 PC3 PC4 PC5
Fig. 13. AHP model for problem of buying a PC.

Figure 13 shows the relative measurement AHP model for the problem of buying a
PC. For the goal on the first level (i.e., the problem of buying a PC), four criteria on
the second level and five alternatives on the third level were defined. Here, we used
the following four criteria: low price, high mobility, high performance, and preference
of design. Here, high mobility means light weight and long battery life. High
performance means high CPU speed, large main memory capacity, large HDD storage
capacity and large monitor. We can select some alternatives using the PC maps in
several ways: from a favorite cluster, from a favorite component map, from a favorite
brand, from a total map. For example, we selected five alternatives (Table 14) using
the neighborhood view function of Viscovery SOMine 4.0 software (this function
displays all neurons that are topologically similar to a reference neuron) from a
favorite cluster N3 of a recent PC map whose main feature is high performance, as
shown in Figure 14. Here, PC 1 (FMVNFE70B) is a favorite PC and a reference
neuron. We referred PC 1 and obtained four neighbor PCs using the maps.
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Fig. 14. Selection of alternatives using neighborhood view function.

Then, we applied AHP. The pair comparison matrix among four criteria considered
by one of us is shown in Table 11. For example, price is strongly important in
comparison to mobility. Performance is strongly important in comparison to design.
As a result, performance is most important (its weight = 0.515). Consistency index
means whether a pair comparison matrix is consistent or not. When the index is lower
than 0.10, we judge that the pair matrix is consistent [Saaty 1980]. When the index is
larger than 0.10, pairwise comparisons should be reconsidered. The pair comparison
matrix for price is shown in Table 12. From the point of view of low price, PC 3 is
strongly important in comparison to PC 1 and PC 2. The weight of PC 3 was highest
(its weight = 0.562). The weight matrix for four criteria is shown in Table 13. We
obtain final results as follows: final results = the weight matrix for four criteria (Table
13) times the weight matrix among four criteria (Table 11). For example, the result
for PC 3 is obtained as follows.

0.562 * 0.293 + 0.09 * 0.050 + 0.222 * 0.515 + 0.109 * 0.142 = 0.299

In this case, performance is the most important and price is important. Because PC
3 is comparatively low price, PC 3 is selected as the final choice (Table 14).

Table 11. Pair comparison matrix among four criteria.

Price Mobility | Performance Design Weight
Price 1 5 1/2 3 0.293
Mobility 1/5 1 17 1/5 0.050
Performance 2 7 1 5 0.515
Design 1/3 5 1/5 1 0.142

Consistency index = 0.064



Table 12. Pair comparison matrix for price.

Creating Product Maps with Self-Organizing Maps 65

PC1| PC2 PC3 PC 4 PC5 Weight
PC1 1 1/2 1/5 3 3 0.125
PC2 2 1 1/5 5 5 0.208
PC3 5 5 1 7 7 0.562
PC 4 1/3 1/5 17 1 2 0.060
PC5 1/3 1/5 17 1/2 1 0.045
Consistency index = 0.066
Table 13. Weight matrix for four criteria.

Price Mobility | Performance | Design

PC1 | 0.125 0.056 0.222 0.369

PC2 | 0.208 0.373 0.111 0.206

PC3 | 0.562 0.090 0.222 0.109

PC4 | 0.060 0.108 0.222 0.206

PC5 | 0.045 0.373 0.222 0.109

Table 14. Alternatives and final results of AHP for problem of buying a PC.

CPU Mem. | Monitor | Weight | Battery Price Results
(GHz) | (GB) | (inches) (kg) (hours) (yen)
PC1 2.53 4 15.6 2.80 2.1 129,800 0.206
PC 2 2.53 4 14.1 2.50 3.9 122,280 0.166
PC 3 2.53 4 15.4 2.70 2.4 109,800 0.299
PC4 2.53 4 16.4 3.20 3.0 141,871 0.167
PC5 2.66 4 15.6 2.75 4.0 148,799 0.162

5 Conclusion

We propose a way of creating product maps with SOM. First, we provide two class
boundaries which divide the range between the maximum and minimum of an input
feature value into three equal parts. Second, we create self-organizing product maps
using the classified data inputs. We applied our way to five kinds of products. For all
the products, we confirmed the effectiveness of our way. In future work, we will
apply our way to other products, very large problems (for example, the number of
products is very large) and other real-world clustering problems. We will investigate a
way of improving the accuracy of each cluster. We will use other types of AHP and
ANP for decision making.
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