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Data Mining for Aerodynamic Design Space
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Analysis of variance (ANOVA) and self-organizing map (SOM) were applied to data min-
ing for aerodynamic design space. These methods make it possible to identify the effect of
each design variable on objective functions. ANOVA shows the information quantitatively,
while SOM shows it qualitatively. Furthermore, ANOVA can show the effects of interac-
tion between design variables on objective functions and SOM can visualize the trade-offs
among objective functions. This information will be helpful for designers to determine the
final design from non-dominated solutions of multi-objective problems. These methods were
applied to two design results: a fly-back booster in reusable launch vehicle design, which has
4 objective functions and 71 design variables, and a transonic airfoil design performed with
the adaptive search region method.

Nomenclature
A cross-sectional area of airfoil
ci best-matching unit
E[I (·)] expected improvement
r′ vector of correlation values for Kriging model
R correlation matrix for Kriging model
s2(·) mean squared error of the predictor
x vector denoting position in the design space
x scalar component of x
y vector of response data
β constant global model of Kriging model
β̂ estimated value of constant global model
φ standard normal density
� standard normal distribution
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µ̂total total mean of model
θ vector of correlation parameters for Kriging model
θk kth element of θ

σ̂ 2 estimated variance of Kriging model
σ̂ 2

total total variance of model

I. Introduction

WITH recent advances in computing power and the development of high-fidelity Computational Fluid Dynamics
(CFD) codes, design optimization with CFD has become an essential tool in the field of aircraft design. There

are several approaches for design optimization using CFD: the Adjoint method, which is a gradient-based method,
is very efficient for design problems having large numbers of design variables,1–2 and Genetic Algorithms (GA),
which are population-based methods, are very powerful for multi-objective design problems.3–5

However, research in optimization is mainly concerned with finding the optimal solution or the non-dominated
(Pareto) solutions of multi-objective problems. In the engineering design field, it is also important to determine the
final design from nominated solutions, such as non-dominated solutions of multi-objective problems. Thus, it is
preferable for a designer to provide the non-dominated solutions with some useful information for the final design
decision. Information about the design space, such as trade-off relations between objective functions and the relations
between design variables and objective functions, are among the most useful information for the final design decision.
Furthermore, this information will be useful to understand why the final design has good performance and makes it
possible to simplify the design problem by eliminating the design variables that do not have a large influence on the
objective functions.

The process to find the information from the design results is called ‘data mining.’ In this study, Analysis of
Variance (ANOVA)6−7 and Self-Organizing Map (SOM)8−9 were used for data mining. The former uses the variance
of the objective function due to design variables on response surface models. ANOVA can identify not only the effect
of each design variable but also the effect of interactions between design variables on objective functions. ANOVA
expresses the information in a quantitative way. On the other hand, SOM employs a nonlinear projection algorithm
from high to low dimensions and a clustering technique. This method can visualize not only the relations between
design variables and objective functions but also the trade-offs between objective functions. The method expresses
the information in a qualitative way.

These techniques were applied to the results of two design problems:
1. The fly-back booster of a reusable launch vehicle design that treats 4 objective functions and 71 design

variables; the results showed that the present data-mining techniques are useful to analyze problems with
large numbers of design variables.

2. Transonic airfoil design using the adaptive search region method; the results indicated the influence of
definition of the design space on the data mining results.

II. Analysis of Variance (ANOVA)
ANOVA uses the variance of the objective functions due to the design variables on the response surface models.

The response surface model should be constructed for each objective function to calculate the variance. The response
surface model used in the present study is the Kriging model.7,10,11

A. Kriging Model
The Kriging model, developed in the field of spatial statistics and geostatistics, predicts the value of the unknown

point using stochastic processes. The Kriging predictor is expressed as follows:

ŷ(x) = β̂ + r′R−1
(y − 1β̂) (1)

where x = {x1, x2, . . . , xm} is an m-dimensional vector of design variable, y is an n-dimensional column vector
of sampled response data, 1 is an n-dimensional unit column vector, and R is the correlation matrix whose (i, j)
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element is:

R(xi , xj ) = exp

[
−

m∑
k=1

θk

∣∣∣xi
k − x

j

k

∣∣∣2
]

(2)

The correlation vector between x and the n sampled data is expressed as:

r′(x) = [
R(x, x1), R(x, x2), . . . . . . , R(x, xn)

]
(3)

The β̂ can be calculated using the following equation:

β̂ = 1′R−1y

1′R−11
(4)

The unknown parameter, θ, for the Kriging model can be estimated by maximizing the following likelihood function:

Ln(β̂, σ̂ 2, θ) = −n

2
ln(σ̂ 2) − 1

2
ln (|R|) (5)

where σ̂ 2 can be calculated as follows:

σ̂ 2 =
(

y − 1β̂
)′

R−1
(

y − 1β̂
)

n
(6)

Maximization of the likelihood function is an m-dimensional unconstrained non-linear optimization problem.
A simple genetic algorithm is used to solve this problem.

The accuracy of the predicted value depends largely on the distance from the sample points. Intuitively, the closer
point x is to the sample points, the more accurate the prediction, ŷ(x), becomes. This is expressed in the following
equation:

s2(x) = σ̂ 2

[
1 − r′R−1r + (1 − 1R−1r)2

1′R−11

]
(7)

where s2(x) is the mean squared error at point x, indicating the uncertainty of the estimated value.

B. Decomposition of Variance
Once the response surface model is made, the effects of design variables on the objective function can be calculated

by decomposing the total variance of the model into the variance component due to the design variable. Decomposition
is done by integrating variables out of the model ŷ. The total mean (µ̂total) and the variance (σ̂ 2

total) of the model are
as follows:

µ̂total ≡
∫

· · · ·
∫

ŷ(x1, . . . . . . , xm)dx1 · · · dxm (8)

σ̂ 2
total =

∫
· · · ·

∫ [
ŷ(x1, . . . . . . , xm) − µ̂total

]2
dx1 · · · · dxm (9)

The main effect of variable xi and the two-way interaction effect of variables xi and xj are given as:

µ̂i(xi) ≡
∫

· · ·
∫

ŷ(x1, . . . , xm)dx1 · · dxi−1dxi+1 · · dxm − µ̂
total

(10)

µ̂i,j (xi, xj ) ≡
∫

· · · ·
∫

ŷ(x1, . . . . . . , xm)dx1 · · dxi−1dxi+1 · · dxj−1dxj+1 · · dxm − µ̂i(xi) − µ̂j (xj ) − µ̂total

(11)

µ̂i(xi) and µ̂i,j (xi, xj ) quantify the effect of variable xi and interaction effect of xi and xj on the objective function.
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The variance due to the design variable xi is given as:

σ̂ 2
i =

∫ [
µ̂i (xi)

]2
dxi (12)

The proportion of the variance due to design variable xi to total variance of the model can be calculated by dividing
Eq. (12) by Eq. (9):

σ̂ 2
i

σ̂ 2
total

=
∫ [

µ̂i (xi)
]2

dxi∫ · · · · ∫ [
ŷ(x1, . . . . . . , xm) − µ̂

]2
dx1 · · · · dxm

(13)

This value indicates the effect of design variable xi on the objective function.

III. Self-Organizing Map (SOM)
A. General SOM algorithm

SOM is one of the unsupervised neural networks techniques that classify, organize, and visualize large data
sets. SOM is a nonlinear projection algorithm9 from high- to low-dimensional space. This projection is based on
self-organization of a low-dimensional array of neurons. In the projection algorithm, the weights between the input
vector and the array of neurons are adjusted to represent features of the high-dimensional data on the low-dimensional
map. The closer two patterns are in the original space, the closer the response of two neighboring neurons in the
low-dimensional space. Thus, SOM reduces the dimensions of input data while preserving their features.

A neuron used in SOM is associated with weight vector wi = [wi1, wi2, . . . . . . , wim](i = 1, . . . . , N), where m is
the dimension of the input vector and N is the number of neurons. Each neuron is connected to its adjacent neurons by
a neighborhood relation and usually forms a two-dimensional rectangular or hexagonal topology as shown in Fig. 1.

The learning algorithm of SOM begins with finding the best-matching unit (wc), which is closest to the input
vector x as follows:

‖x − wc‖ = min ‖x − wk‖ (k = 1, . . . . . . ., N) (14)

Once the best-matching unit is determined, the weight adjustments are performed not only for the best-matching
unit but also for its neighbors to organize the topological mapping. The adjustment depends on the distance (similarity)
between the input vector and the neuron. Based on the distance, the best-matching unit and its neighboring neurons
become closer to the input vector as shown in Fig. 2. The topology before the adjustment is represented with the solid
line and the weight vectors at that stage are represented by black dots. The best-matching unit is the weight vector
closest to the input vector x. The best-matching unit and its neighbors are adjusted to be closer to the input vector x.
The adjusted topology is represented by dashed lines and its weight vectors are represented as white dots. With
repeated iterations of this learning algorithm, the weight vectors become smooth not only locally but also globally.
Thus, the sequence of close vectors in the original space results in a sequence of corresponding neighboring neurons
in the two-dimensional map.

Fig. 1 Topology used in SOM.
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Fig. 2 Adjustment of best-matching unit and its neighbors.

B. Kohonen’s Batch-SOM
In this investigation, SOM were generated using commercial software Viscovery� SOMine plus 4.012 produced

by Eudaptics GmbH. Although SOMine is based on the general SOM concept and algorithm, it employs an advanced
variant of unsupervised neural networks, i.e. Kohonen’s Batch SOM.8 The algorithm consists of two steps that
are iterated until no more significant changes occur: search of the best-matching unit ci for all input data {xi} and
adjustment of weight vector {wj} near the best-matching unit. The Batch-SOM algorithm can be formulated as
follows:

ci = arg min
j

∥∥xi − wj

∥∥ (15)

w∗
j =

∑
i hjci

xi∑
i ′ hjci

(16)

where w∗
j is the adjusted weight vector. The neighborhood relationship between the neuron j and the best-matching

unit ci is defined by the following Gaussian-like function:

hjci
= exp

(
−d2

jci

r2
t

)
(17)

where djci
denotes the Euclidean distance between the neuron k and the best-matching unit ci on the map, and rt

denotes the neighborhood radius, which is decreased with the iteration steps t.
The standard Kohonen algorithm adjusts the weight vector after each record is read and matched. On the other

hand, Batch-SOM takes a ‘batch’ of data (typically all records), and performs a ‘collected’ adjustment of the weight
vectors after all records have been matched. This is much like ‘epoch’ learning in supervised neural networks. Batch-
SOM is a more robust approach, as it mediates over a large number of learning steps. In SOMine, the uniqueness
of the map is ensured by adoption of Batch-SOM and the linear initialization for input data. Much like some other
SOM, SOMine creates a map in a two-dimensional hexagonal grid. Starting from numerical, multivariate data, the
nodes on the grid gradually adapt to the intrinsic shape of the data distribution. As the position on the grid reflects
the neighborhood within the data, features of the data distribution can be read from the emerging map on the grid.
The trained SOM is systematically converted into visual information.
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C. Cluster Analysis
Once the high-dimensional data is projected onto the two-dimensional regular grid, the map can be used for

visualization and data mining. It is efficient to group all neurons by similarity to facilitate SOM for qualitative analysis,
because the number of neurons on the SOM is large as a whole. This process of grouping is called ‘clustering.’

Here, the hierarchical agglomerative algorithm was used for clustering. First, each node itself forms a single
cluster and two clusters, which are adjacent in the map, are merged in each step. The distance between two clusters
is calculated by using the SOM-ward distance12. The number of clusters is determined by the hierarchical sequence
of clustering. Relatively small numbers of clusters are used for visualization, while large numbers are used for
generation of weight vectors for the respective design variables.

IV. Results
A. Fly-Back Booster of Reusable Launch Vehicle (RLV) Design

The geometry of the fly-back booster13 used in this design is shown in Fig. 3(a). In this design, the fuselage
shape is fixed and only the wing shape design is considered, because the fuselage is filled with the liquid propellant
rocket engines, so little change in its size is possible. The design variables used to define wing shape are related to
planform, airfoil, wing twist, and position of the wing relative to the fuselage. A wing planform is determined by
five design variables as shown in Fig. 3(b). Airfoil shapes are defined at wing root, kink, and tip based on thickness
and camber distributions. Both distributions are parameterized using Bezier curves and linearly interpolated in the
spanwise direction. Wing twist is refined using a B-spline curve with six control points. The position of the wing
root relative to the fuselage is parameterized by x and z coordinates of the leading edge, angle of attack, and dihedral
angle. A total of 71 design variables are used for definition of the wing geometry.

According to trajectory analysis,14 separation of the booster and orbiter takes place around Mach 3 and the booster
turns over, slows down, and cruises at transonic speed and lands at subsonic speed as shown in Fig. 4. To maintain
good aerodynamic performance over a wide flight range, the following 4 objective functions are considered in this
design. Subsonic, transonic, and supersonic flight conditions of the present design are shown in Table 1.

1. Minimization of the difference between supersonic pitching moment and transonic pitching moment.

F1 = ∣∣CSUPERSONIC
M − CT RANSONIC

M

∣∣ (18)

A significant problem related to fly-back booster stability and control may result if the aerodynamic center
experiences a large positional shift between supersonic and transonic flight conditions. Thus, it is desirable
to design wing shapes with less positional variation in the aerodynamic center, as the vehicle decelerates
from supersonic to transonic flight.

2. Minimization of the pitching moment at the transonic flight conditions

F2 = ∣∣CT RANSONIC
M

∣∣ (19)

Fig. 3 Geometry of fly-back booster.
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Fig. 4 Typical flight sequence for Two-Stage-to-Orbit fly-back booster.

It is known that the arrow wing ensures high aerodynamic performance, while it also produces a large pitching
moment. Thus, it should be minimized under transonic flight conditions to reduce trim drag and improve
flight stability.

3. Minimization of drag under transonic flight conditions

F3 = ∣∣CT RANSONIC
D

∣∣ (20)

Trajectory analysis shows that the range of the RLV booster is mostly covered by transonic flight. Thus, the
transonic drag should be minimized to increase the flight range.

4. Maximization of lift under subsonic flight conditions

F4 = CSUBSONIC
L (21)

To reduce the required runway distance, the lift obtained under subsonic flight conditions should be
maximized.

As the optimizer, the Adaptive Range Multi-Objective Genetic Algorithm (ARMOGA)15 is used. The population
size of the present ARMOGA was 8 and 40 generations were performed. From the standpoint of optimization,
these values are too small to guarantee the convergence of ARMOGA. However, these values may be sufficient for
exploration of the design space. Figure 5 shows three-dimensional plots of 102 non-dominated solutions obtained by
ARMOGA. However, it is difficult to understand the features of the design space from Fig. 5. To better understand
the design space, ANOVA and SOM were performed with 102 non-dominated solutions.

ANOVA
ANOVA was performed for 4 objective functions. Variance of design variables and their interactions, the propor-

tions of which to the total variance were larger than 1.0%, are shown in Fig. 6. In the figure, ‘dv’ indicates design
variables and ‘-’ indicates interactions between two design variables.

According to the results, dv7(x coordinate of relative wing position to fuselage) gives the largest effect on the
objective functions F1 and F2, and dv18 (rearward camber height at wing tip) gives the largest effect on F3 and F4.
dv7 and dv18 are illustrated in Fig. 7. With regard to aerodynamics, if the wing position relative to the fuselage is
changed, the aerodynamic center is also changed and this varies the pitching moment. In addition, it is well known

Table 1 Three flight conditions used in the design.

Mach number Angle of attack (◦) Reynolds number

Subsonic 0.3 0.0◦ 6 × 107

Transonic 0.8 8.0◦ 6 × 106

Supersonic 1.2 13.0◦ 6 × 106
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Fig. 5 Non-dominated solutions projected onto three-dimensional objective function space.

that the shape of the camber line is strongly related to drag and lift performance. Thus, the findings from ANOVA
correspond to general knowledge regarding aerodynamics.

SOM
SOM based on four objective functions is generated with 102 non-dominated solutions. Figure 8 shows SOM

classified into 10 clusters based on the similarity with regard to four objective functions. The x and y coordinates of
SOM have no meaning and clusters were arranged to be included in the rectangular frame. From this figure, we cannot
extract any information about the design space. To obtain information about the design space, SOM was colored by
each objective function value as shown in Fig. 9. SOM colored by F1 and F2 showed similar color patterns. Clusters
with large F1 values had large F2 values, and clusters with small F1 values had small F2 values. Thus, F1 and F2 are
not in a trade-off relation because both objective functions should be minimized. On the other hand, in the case of
SOM colored by F3 and F4, although clusters with large F3 values had large F4 and those with small F3 values had
small F4, F3 and F4 were in a severe trade-off relation because F3 should be minimized but F4 should be maximized.
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Fig. 6 ANOVA results.

Figure 10 shows SOM colored by three design variables (dv7, dv18, and dv15). In Fig. 10(a), the clusters with
large dv7 values are situated in the lower left corner. In Figs. 9(a) and 9(b), these clusters also have large F1 and F2

values. Thus, large dv7 values are associated with poor performance of F1 and F2. In Fig. 10(b), the clusters with
large dv18 values are located in the left-hand side. This color pattern is very similar to those of F3 and F4 shown in
Figs. 9(c) and 9(d). This indicates that large dv18 values are related to large F3 and F4 values. These results indicate

Fig. 7 Illustations of dv7 and dv18.

460



JEONG, CHIBA AND OBAYASHI

Fig. 8 SOM classified by 10 clusters with 102 non-dominated solution.

Fig. 9 SOM colored by objective functions.
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Fig. 10 SOM colored by design variable.

that dv7 has a large effect on the objective functions F1 and F2, and dv18 has a large effect on the objective functions
F3 and F4. In Fig. 10(c), SOM colored by dv15 (one of the x coordinates near the leading edge at the kink section)
shows no noticeable trend of color distribution. This indicates that dv15 has little influence on the objective functions.
These results agree with those of ANOVA.

V. Transonic Airfoil Design
In this design, the geometry of the airfoil is defined using PARSEC.16 Figure 11 shows 11 basic parameters for

the PARSEC airfoil. In this design, only a sharp trailing-edge airfoil was considered, and �ZTE was set therefore to
zero. A total of 10 design variables were used to define the geometry of the airfoil. The design problem is defined as
follows:

Minimize Cd

subject to a) Cl ≥ Cl−RAE2822

b) A ∼= ARAE2822

under flow conditions of Mach = 0.73 and an angle of attack (AOA) = 2.7◦. Cl and Cd are lift and drag coefficients
of the designed airfoil, respectively, and Cl_RAE2822 is the lift coefficient of RAE2822 airfoil. A is the cross-sectional
area of the airfoil.

In this design, the search region of the optimization problem was successively changed by investigating the
probabilistic distribution of the design variables. That is, the adaptive search region method17 was used. The design
method consisted of two stages: i) the optimal search and ii) change of the search region. The optimal search procedure
is shown in Fig. 12.

1. Kriging models are constructed for Cl and Cd with N initial sample points. In this study, the number of initial
sample points was 50. These points were selected using Latin hypercube sampling18 to spread the points
uniformly in the search region.

2. GA operations
- Generation of initial population and evaluation.

Fig. 11 PARSEC airfoil and its parameters.
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Fig. 12 Optimal search procedures.

- Selection of parents
- Crossover and mutation
- Evaluation of new individuals in the Kriging models
When the generation exceeds 100, the point with the largest probability of being superior to the current
optimum is selected as an additional sample point. The probability of being superior to the current minimum
can be calculated using the ‘Expected Improvement’7 criterion. In the minimization problem, EI is expressed
as follows:

E [I (x)] = E
[
max(fmin − ŷ, 0)

] = (fmin − ŷ)�

(
fmin − ŷ

s

)
+ sφ

(
fmin − ŷ

s

)
(22)

where � and ϕ are the standard distribution and normal density, respectively.
This routine is iterated until the termination criterion is reached. In the present study, termination the criterion was
the maximum number of additional sample points.

Once optimization is over, the validity of the search region is examined. This procedure is shown in Fig. 13.
First, the superior population (SP) is generated by GA. In ‘SP,’ its individuals satisfy all design constraints and the

Fig. 13 Change of search region.
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objective function values of its individuals are larger than certain values. The distribution of design variables in the
SP is investigated and the validity of the search region is checked. If the search region is invalid, the search region is
redefined using the probabilistic method. A few additional sample points are required for the extended region of the
redefined search region to ensure the accuracy of the Kriging models. This routine is iterated until no search region
modification occurs.

The initial and final search regions are shown in Fig. 14. The final search region of all design variables, except
ZTE and ZXXUP, expanded outside of the initial search region. This final search region was obtained after 3 search
region redefinitions. For this design, data mining techniques are performed in both the initial and final search regions
to examine the dependency on the search region.

ANOVA
First, ANOVA is performed in the initial search region with 56 sample data. First, 50 points are selected by Latin

hypercube sampling and the last 6 data are selected by the optimal search algorithm shown in Fig. 12. The variance
of design variables and the interactions in which the proportion to the total variance is larger than 2.0% are shown in
Fig. 15. According to Fig. 15, ZUP and ZLO have comparatively large effects on Cl, and ZUP has the largest effect on

Fig. 14 Comparison of initial search region and final search region.
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Fig. 15 ANOVA results in initial search region.

Cd. These parameters are related to the definition of airfoil thickness. These findings coincide with the aerodynamic
knowledge.

ANOVA is also performed in the final search region with 110 sample data. The first 56 points are the same as
those used in the initial search region and the rest of the points are selected during the optimization process using the
adaptive search region method. According to Fig. 16, ZUP and ZLO have large effects on Cl, and ZUP and ZUP-ZLO

have comparatively large effects on Cd. The proportion of rLE, which is small in the initial search region, is large in the
final search region. This finding corresponds to the aerodynamic knowledge that the leading-edge radius is important
for drag performance. This means that the effects of design variables on objective functions may vary according to the
definition of the search region. Thus, elimination of a design variable, which initially has little influence on any of the
objective functions before a validity check of the search region is performed, may lead to an undesirable design result.

SOM
SOM was also applied to the results of the transonic airfoil design. Figure 17 shows the SOM colored by Cl and

Cd in the initial search region. The upper left corner and the lower right corner in Figs. 17(a) and 17(b) show similar
color patterns. On the other hand, the upper right corner and the lower left corner show opposite color patterns. From

Fig. 16 ANOVA results in final search region.
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Fig. 17 SOM colored by objective functions in initial search region.

these observations, we can classify 56 data into 4 groups: i) both Cl and Cd are large (upper left corner), ii) both Cl

and Cd are small (lower right corner), iii) Cl is large and Cd is small (lower left corner), and iv) Cl is small and Cd is
large (upper right corner). Thus, Latin hypercube sampling used for the initial sample point selection successfully
generated a wide variety of airfoils with various Cl and Cd performances.

Figure 18 shows the SOM colored by three design variables. In Fig. 18(a), the clusters with large ZUP values are
located in the upper right side and the clusters with small ZUP values are located in the lower left side. The distribution

Fig. 18 SOM colored by design variables in the initial search region.

Fig. 19 SOM colored by objective function in final search region.
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Fig. 20 SOM colored by generated order.

of color is similar to that of SOM colored by Cd. In Fig. 18(b), although the distribution of color is not as clear, it is
similar to that of SOM colored by Cl. In Fig. 18(c), colored by rLE, there is no noticeable color pattern. These results
indicate that ZUP and ZLO have some effect on Cd and Cl, respectively, and rLE has little effect on Cl and Cd. These
results coincide with those of ANOVA applied for the same search region.

SOM was also applied to the final design space with 110 data. Figure 19 shows the SOM colored by Cl and Cd in
the final search region. In Fig. 19(a), the clusters with large Cl values are located in the left-hand side and the clusters
with small Cl values are located in the right-hand side. On the other hand, in Fig. 19(b), the clusters with large Cd

values are located on the right side and those with small Cd values are located on the left side. From these SOM, we
can classify all data into two groups: i) both Cl and Cd performances are good, and ii) both Cl and Cd performances
are poor. Figure 20 shows the SOM colored by the generated order. The data, with generated order from 1st to 50th
were generated by the Latin hypercube sampling, and those with generated order later than 50th were generated
through the optimization process. The color distribution of this map is similar with that shown in Fig. 19(a). The

Fig. 21 SOM colored by design variables in final search region.
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clusters with high generated order showed relatively good Cl and Cd performances. These observations indicated
that the optimization method used in this investigation worked well.

Figure 21 shows the SOM colored by four design variables. The color pattern of Fig. 21(a) is similar to that of
Fig. 19(b), indicating that small ZUP values are related to good Cd performance of the airfoil. The color distributions
of Figs. 21(b) and 21(c) are similar to those of Fig. 19(a), indicating that high values of ZLO and XUP are associated
with good Cl performance. In Fig. 21(d), clusters with small rLE values are located on the left-hand side, similar to
Fig. 19(b). A small rLE value is related to good Cd performance. These results coincide with those of ANOVA in the
final search region.

VI. Conclusions
In the present study, two data mining techniques—analysis of variance (ANOVA) and self-organizing map

(SOM)—were applied to optimization design results. ANOVA shows the effect of each design variable on objec-
tive functions quantitatively and SOM shows the information qualitatively. Furthermore, ANOVA can show the
effect of interactions of design variables on objective functions. On the other hand, SOM can show the trade-offs
between objective functions. The acquired information helps the designer to determine the final design from the
non-domination solutions of multi-objective problems and can also be used to identify why the obtained optimum
solution has good performance. Furthermore, the information will make it possible to simplify the design space by
eliminating design variables that have little effect on the design problem.

However, as in the transonic airfoil design case using the adaptive search region method, the acquired information
was dependent on the definition of the search region. To obtain the correct information, the data for data mining
should be selected carefully.

Further studies are required to investigate methods of selecting the data for data mining. The results of most data
mining techniques are largely dependent on the data used. Robust data selection methods are necessary to ensure the
consistency of information obtained from data mining.
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