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Focus of the Paper

®m Self-organizing maps (SOMs) are routinely used in clustering

@ New software for SOM-based clustering continues to emerge
B How well do these software packages perform?

® \Ve construct 96 data sets and evaluate the performance of 4
SOM-based clustering procedures as well as the K-means

algorithm

@ Classification accuracy is measured using the cluster recovery

rate and the Rand statistic.



Introduction

B Clustering is a common activity in data mining

B The goal is to partition the observations of a data set into clusters
B The observations within a cluster should be similar
B Observations in different clusters should be dissimilar

B Numerous applications in biology, business, and engineering



Self-Organizing Maps (SOMs)

® Developed by Teuvo Kohonen in early 1980s

B Observations are mapped onto a two-dimensional hexagonal grid
B Related to MDS and Sammon maps, but ensures better spacing
® Colors are used to indicate clusters

B Software: SOM_PAK (Public domain, WWW), Viscovery (Eudaptics,

Austria)
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Software Implementations Studied

B SOM-based Viscovery procedures

e Ward clustering —

e modified-Ward clustering — Viscovery SOMine 4.0

e single linkage clustering |

B Classic SOMclustering ~~ ——  SOM_Pak

B K-means algorithm } Clementine



Our Approach

B Start with “eaSy” problems

B Apply the procedures to problems for which the clusters are

already known
B \We construct 96 data sets in which the clusters are well separated

® In Figure 1, we see a two-dimensional plot of a four-cluster data set
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Figure 1. An example of a four-cluster data set.




Experimental Design

Factors Values
# of clusters 3,4,5,6
# of dimensions 3,4
# of data points 50, 100, 150, 200
amount of internal low, medium, high
dispersion

m Using this design, we construct 4x2x4x3=96 data sets



Constructing Data Sets and Measuring Performance

® The multivariate normal distribution is used to construct clusters that

exhibit external isolation and internal cohesion (see paper for details)

@ Cluster recovery rate

e the proportion of times a clustering procedure correctly recovers

the cluster structure

e the percentage of times a procedure correctly determines the

cluster membership of each and every data point.

B The Rand Statistic 9



The Rand Statistic

Table 1. Pairwise classification notation.

Correct Solution

Clustering Procedure Pair in Same Cluster Pair Not in Same Cluster
Solution

Pair in Same Cluster A B

Pair Not in Same Cluster C D

B The Rand statistic provides the proportion of correct pairwise

classifications for the data set and equals (A+D)/(A+B+C+D)

m The Rand statistic equals one when the solution generated by

the clustering procedure is correct
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Results

‘Table 2. Cluster recovery rates (in %).

SOM- SOM-Single
SOM-Ward Modified Ward Linkage SOM-Classic K-Means
92.7 91.7 82.3 14.6 80.2

B SOM-Ward recovers the true clusters in 89 of 96 data sets
(89/96=.927)

B SOM-Ward and SOM-Modified Ward perform very well
B SOM-Single Linkage and K-Means perform well

B SOM-Classic performs poorly
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Results - - continued

Table 3. Cluster recovery rates (in %) by level of dispersion.

Level of Dispersion

Procedure Low Medium High
SOM-Ward 100 94 84
SOM-Modified Ward 100 91 84
SOM-Single Linkage 100 91 56
SOM-Classic 19 16 9
K-Means 88 78 75

B As the intra-cluster dispersion increases, internal cohesion of clusters

is reduced and cluster recovery rates decrease

@ At all levels of dispersion, the first two procedures perform best
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Results - - continued

Table 4. Values of the Rand statistic.

Number of Clusters Row
Clustering Procedure 3 4 5 6 Average
Low Intra-Cluster Dispersion
SOM-Ward 1.000 1.000 1.000 1.000 1.000
SOM-Modified Ward 1.000 1.000 1.000 1.000 1.000
SOM-Single Linkage 1.000 1.000 1.000 1.000 1.000
SOM-Classic 0.846 0.899 0.911 0.886 0.886
K-Means 1.000 1.000 0.988 0.965 0.988
Medium Intra-Cluster Dispersion
SOM-Ward 0.994 0.989 1.000 1.000 0.996
SOM-Modified Ward 0.995 0.986 1.000 0.997 0.995
SOM-Single Linkage 1.000 0.999 1.000 0.999 0.999
SOM-Classic 0.898 0.878 0.893 0.893 0.890
K-Means 0.995 1.000 0.988 0.931 0.979
High Intra-Cluster Dispersion
SOM-Ward 0.914 0.954 0.984 1.000 0.963
SOM-Modified Ward 0.951 0.971 0.996 1.000 0.980
SOM-Single Linkage 0.946 0.977 0.992 0.991 0.977
SOM-Classic 0.915 0.931 0.876 0.898 0.905
K-Means 1.000 0.960 0.990 0.950 0.975
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Results - - continued

@ Each entry in Table 4 is an average over 8 data sets

® As the level of dispersion increases (especially for 3 or 4 clusters), the

performance of each procedure generally deteriorates

@ Both SOM-CIassic and K-Means require the user to specify the

number of clusters in advance
®m Viscovery, on the other hand, does not have this requirement

® Viscovery can determine the number of clusters on its own
| 14



Results - - continued

Table 5. Cluster recovery rates (in %) for Viscovery (number of clusters is not specified).

SOM-Ward SOM-Modified Ward SOM-Single Linkage
83.3 82.3 71.9

@ For each procedure, the recovery rate drops about 10 percentage
points from the recovery rate generated when number of clusters was
specified (Table 2)

B These results are still competitive with the recovery rate from K-
Means (80.2%) when K-Means has the advantage of knowing the true

number of clusters
15



Conclusions

B \We evaluated the performance of 4 SOM-based clustering

procedures when the clusters are well separated

B The three procedures in Viscovery SOMine 4.0 performed well, better

than K-Means, and much better than the procedure in SOM_Pak

m Viscovery users who are not sure of the number of clusters may rely

on the package to determine the number of clusters

m Bottom line: Viscovery seems to do reasonably well
16



