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Structurization and Visualization of Design Space by Fluid 

Informatics 

Shigeru Obayashi (Professor), Jeong Shinkyu (Associate Professor), and Koji Shimoyama (Assistant Professor) 

Multi-Objective Design Exploration (MODE) is presented to address 

Multidisciplinary Design Optimization problems. MODE reveals the structure of the 

design space from the trade-off information and visualizes it as a panorama for Decision 

Maker. The present form of MODE consists of Kriging Model, Adaptive Range Multi 

Objective Genetic Algorithms, Analysis of Variance and Self-Organizing Map. The 

application to the regional jet design illustrates how the present approach finds design 

knowledge.  

 Introduction 1.1.

Multidisciplinary design optimization (MDO) is gaining great importance in aerospace engineering. A 

typical MDO problem involves multiple competing objectives. While single objective problems may have a 

unique optimal solution, multi-objective problems (MOPs) have a set of compromising solutions, largely known 

as the trade-off surface, Pareto-optimal solutions or non-dominated solutions. These solutions reveal trade-off 

information among different objectives. They are optimal in the sense that no other solutions in the search space 

are superior to them when all objectives are taken into consideration. A designer will be able to choose a final 

design with further considerations. 

Evolutionary algorithms (EAs)
1
 are suitable for finding many Pareto-optimal solutions. However, because 

EAs are population-based approaches, they generally require a large number of function evaluations. To 

alleviate the computational burden, the use of the response surface method (RSM) has been introduced as a 

surrogate model.
2
 The surrogate model used in this study is the Kriging model.

3,4,5
 

A MDO system denoted multi-objective design exploration (MODE) was proposed in Obayashi et al
6
.
 
and is 

illustrated in Figure 1.1. MODE is not intended to provide an optimal solution. MODE reveals the structure of 

the design space from trade-off information and visualizes it as a panorama for a decision maker. The present 

form of MODE consists of the Kriging model, adaptive range multi objective genetic algorithms, analysis of 

variance and a self-organizing map (SOM).
7
 SOM divides the design space into clusters. Each cluster represents 

a set of designs containing specific design features. A designer may find an interesting cluster with good design 

features. Such design features are composed of a combination of design variables. If a particular combination of 

design variables is identified as a sufficient condition belonging to a cluster of interest, it can be considered as a 

design rule. Rough set theory
8 
and other data mining techniques have been employed to extract design rules. 

Through the applications of MODE, this article illustrates the importance of understanding the design problem 

better instead of obtaining a single optimal solution. 

In Japan, the New Energy and Industrial Technology Development Organization (NEDO) subsidized the 

development of an environmentally friendly high performance small jet aircraft. Mitsubishi Heavy Industries, 

Ltd. (MHI) was the prime contractor for the project. The purpose of this project was to build a prototype aircraft 

using advanced technologies, such as low-drag wing design, and lightweight composite structures, which were 

necessary for the reduction of environmental burdens. In March 2008, MHI decided to bring this conceptual 

aircraft into commercial use. This commercial jet aircraft, named the Mitsubishi regional jet (MRJ), has a 

capacity of about 70-90 passengers. This project focused on environmental issues, such as reduction of exhaust 

emissions and noise. Moreover, in order to bring the jet to market, lower-cost development methods using 

computer-aided design were also employed in this project. This article discusses two applications of MODE: 

MDO for a regional-jet wing with engine-airframe and structural design optimization for a regional-jet 

horizontal tail. 
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Figure 1.1  Flowchart of multi-objective design exploration with component algorithms 

 

 MDO SYSTEM 1.2.

This MDO system consists of three modules: the mesh generation module, CFD & CSD module, and 

Kriging model & Optimization module.  

1.2.A. Mesh Generation Module 

In this study, NURBS
9,10

 technique employing the B-spline function is adopted. A total number of the design 

variables is 26. This number was determined as results of comparisons with PARSEC.
11

 Especially, NURBS has 

higher degree of freedom than PARSEC near the leading and trailing edges. 

A speedy and robust surface mesh generation system which is applicable to engine-airframe integration is 

necessary. Although the unstructured dynamic mesh method is very useful for the modification of the wing 

shape,
12

 this method sometimes produces the distorted mesh for a large displacement. Furthermore, In the case 

of the engine-airframe integration, this method cannot be applied because of complexities at junctions among 

wing, fuselage, pylon, and nacelle. In this study, wing-body-nacelle-pylon configuration mesh is automatically 

generated in the following steps (Figure 1.1). 

(a) Airfoil sections are defined by NURBS specified by the design variables. 

(b) 3D wing is generated using the airfoil sections. 

(c) Extract the intersection lines among wing, fuselage, and nacelle-pylon. 

(d) Delete the extra wing and pylon geometries which are inside of other geometies. 

(e) Combine the wing, the body, and the nacelle-pylon. 

(f) Specify mesh point distributions along ridge lines. 

(g) Generate unstructured surface mesh using the advancing front method of TAS-Mesh.
13,14

 

(h) Generate unstructured volume mesh using delaunay tetrahedral meshing.
15

 

 

Define design space 

Construct surrogate model 

Find non-dominated front 

of EIs 

Check the model and front 

Extract design knowledge   

Choose sample points 

Parameterization: NURBS->non-uniform rational B-

spline 

Design of experiment: Latin hypercube 

Response surface method: Kriging model 

Optimization: adaptive range multi 

objective genetic algorithms 

Uncertainty analysis: expected improvement 

based on Kriging model, statistics of design 

variables, etc.  

Data mining: analysis of variance, self-

organizing map, rough set theory, etc. 
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Figure 1.2  Procedures for mesh generation 

1.2.B. CFD & CSD Module 

In order to evaluate aerodynamic and structural performances, CFD&CSD module in Figure 1.2 is 

performed. The procedure is as follows: 

 

(a) Euler analysis is performed for the sample points. 

(b) Using the pressure distribution obtained from the Euler analysis, structural and flutter analysis models 

are generated by FLEXCFD which is an aeroelastic-structural interface code. 

(c) Structural optimization is conducted to minimize wing weight under the strength and flutter constraints. 

 

In the CFD&CSD module, structural optimization of a wing box is performed to realize minimum weight 

with constraints of strength and flutter. Given the wing outer mold line for each individual, the finite element 

model of wing box is generated automatically by the FEM generator for the structural optimization. The wing 

box model mainly consists of shell elements representing skin, spar and rib. Other wing components are 

modeled using concentrated mass elements. In the present study, MSC. NASTRAN
16

  which is a high-fidelity 

commercial software is employed for the structural and aeroelastic evaluations. 

1.2.C. Kriging Model & Optimization Module 

Integrated configuration 

Geometories of body, wing, and nacelle-pylon  

Unstructured surface mesh  
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Aerodynamic optimization using MOGA requires a tremendous computational time for objective function 

evaluations, even with a high performance supercomputer facility. To make the optimization more practical, an 

approximation model is introduced. The approximation model used in this study is the Kriging model.
17,18

 This 

model, developed in the field of spatial statistics and geostatistics, predicts the distribution of function values at 

unknown points instead of the function values themselves. From the distribution of function values, both 

function values and their uncertainty at unknown points can be estimated. By using these values, the balanced 

local and global search is possible. This concept is expressed as the criterion ‘Expected Improvement (EI)’ 
19

 EI 

indicates the probability being superior to the current optimum in the design space. By selecting the maximum 

EI point as an additional sample point for the Kriging model, the improvement of the model accuracy and the 

exploration of the optimum can be achieved at the same time. 

 

 MDO FOR THE REGIONAL-JET WING  1.3.

WITH ENGINE-AIRFRAME INTEGRATION 

Under the regional-jet project in Japan, Tohoku University participated as a collaborator and published a 

number of research results. Obayashi et al.
6
 and Takenaka et al.

10
 provided an overview of the collaborative 

works. Chiba et al.
20

 and Kumano et al.
21 

 gave an account of the MDO system development for the main wing. 

Hatanaka et al.
22

  and Kumano et al.
23

 described the MDO system for engine-airframe integration. The winglet 

design was performed by Takenaka et al.
24 

Aeroelastic simulations were also performed in the works provided 

by Kumano et al.
25

  and Morino et al.
26

 

1.3.A. Definition of optimization problem 

The application shown here is the MDO tool for a regional-jet wing design with engine-airframe 

integration.
23

 It should be noted that the optimized wing is not the exact MRJ wing; rather, the acquired design 

knowledge from the present application has been utilized for the MRJ wing design. Integration is an imperative 

issue in aircraft design. The shock wave generated inboard of the pylon may lead to flow separation and 

buffeting. To prevent these phenomena, the wing shape near the pylon has been optimized. The following 

design objectives are considered here. 

<Objective functions> 

 Minimize  

  - Drag under cruising conditions (CD).  

  - Shock strength near wing-pylon junction (–Cp,max). 

  - Structural weight of the main wing (Wing weight). 

<Design variables> 

  - Airfoil shapes of lower surface at 2 spanwise sections = 26 variables 

  - Twist angles at 4 sections   = 4 variables 

         30 variables in total 

<Constraints> 

  - Wing thickness > specified value 

  - Rear spar height > specified value 

       - Strength margin > specified value 

  - Flutter margin > specified value 

1.3.B. Optimization results  

During the optimization, the update of the Kriging models was performed six times. A total of 149 sample 

points were used. Figure 1.3 shows the performance of the baseline configuration and those of additional sample 

points at every iteration. As the iteration progressed, sample points moved toward the optimum direction 

indicating that the additional sample points for update were selected successfully. Several solutions with 

improvements in all objective function values compared with the baseline shape were obtained. One of the 

solutions was improved in 7.0 counts in CD, 0.503 in –Cp,max, and 21.6 kg in the wing weight compared with 

the performance of the baseline shape. 
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    (a) CD - –Cp,max                                                      (b) –Cp,max - Wing weight 

 

 (c) CD  - Wing weight 

Figure 1.3  Comparison of design performance among the baseline shape and sample points through 

Kriging updates 

1.3.C. Airfoil parameters used in data mining  

Data mining was performed using airfoil parameters that differed from non-uniform rational B-spline 

(NURBS) design variables. The difference is due to the fact that NURBS control points have no aerodynamic or 

structural significance. Figure 1.4 shows the airfoil parameters of interest. XmaxL represents the distance from 

the leading edge to the maximum thickness point of the lower half of the airfoil. maxL is the corresponding 

maximum thickness of the lower half. XmaxTC is the distance from the leading edge to the maximum thickness 

point. maxTC is the corresponding maximum thickness. In addition, sparTC is the thickness at the front spar. 

These parameters are taken at two wing sections as shown in Table 1.1. 
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Figure 1.4 Airfoil parameters used for data mining 
 

 

                Table 1.1 Airfoil parameters used for data mining 

 
ANOVA is a statistical data mining technique that reveals the effects of each design variable on the 

objective and the constraint functions.
4
 ANOVA uses the variance of the model due to individual variables and 

pairs of variables (interactions) of the approximation function based on the Kriging model. By decomposing the 

total variance of the model into components due to main effects and interactions, the influences of individual 

variables and their pairs on the objective function can be calculated. Because the present Kriging model allows 

nonlinear approximation, ANOVA is sufficient for the present data mining. 

Figure 1.5 shows the results of ANOVA for each objective function. According to the results, dv2, dv7, and 

dv9 largely influence CD. dv6, dv10, and dv2 largely influence   －Cp,max. Furthermore, dv6, dv8, and dv2 

largely influence wing weight. 

(a) CD                                                        (b) –Cp,max 
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(c) Wing weight 

Figure 1.5  ANOVA results for each objective function based on airfoil parameters 

1.3.D. Visualization of design space  

In order to visualize the design space, SOMs proposed by Kohonen
7
 were employed. The following SOMs 

were generated by Viscovery SOMine (http://www.eudaptics.com/somine. accessed March 5, 2010). Once the 

user specifies the size of the map, this software automatically initializes the map based on the first two principal 

axes. The aspect ratio of the map is also determined according to the ratio of the corresponding principal 

components. The size of the map is usually 2000 neurons, which provides a reasonable resolution within a 

reasonable computational time.  

Solutions uniformly sampled from the design space were projected onto the two-dimensional SOM. Figure 

1.6 shows the resulting SOM with 12 clusters considering the three objectives. Furthermore, Figure 1.7 shows 

the same SOM colored by the three objectives. These color figures show that the SOM indicated in Figure 1.6 

can be grouped as follows: 

(a) The upper right corner corresponds to the designs containg heavy wing weight and low CD. 

(b) The upper edge area corresponds to those with heavy wing weight.  

(c) The lower right corner corresponds to those with low CD, –Cp,max, and light wing weight. 

(d) The upper left corner corresponds to those with high CD. 

(e) The lower left corner corresponds to those with high CD, and –Cp,max. 

As a result, the lower right corner is the sweet spot in this design space, improving all three objective 

functions. 

 

 

Figure 1.6  Self-organizing map based on the design performance uniformly sampled from the 

design space 
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(a) CD                                                     (b) –Cp,max 

 
(c) Wing weight 

Figure 1.7  Self-organizing map based on the design performance colored by each objective function 
 

Figure 1.8 shows the same SOM colored by four airfoil parameters (dv2, dv6, dv7, and dv10, respectively). 

In Figure 1.8(a) colored by dv2, large dv2 values can be found at the right edge. This area corresponds to small 

CD and -Cp,max values as shown in Figure 1.7(a) and (b), respectively. This signifies that large dv2 values lead 

to acceptable CD and -Cp,max performance. Furthermore, in Figure 1.8(c) colored by dv7, low dv7 values can 

be found at the right edge. This color pattern is very similar to that for CD. This also indicates that low dv7 

values lead to acceptable CD performance.  

In Figure 1.8(b) colored by dv6, large dv6 values can be found at the right edge. This means that large dv6 

values lead to good performance of –Cp,max. In addition, the color pattern of Figure 1.8(d) is very similar to 

that for –Cp,max. This means that low dv10 values lead to good performance of –Cp,max. As shown in Figure 

1.9, large dv6 and low dv10 values mitigate the blockage between the wing and nacelle. Therefore, the 

shockwave between the wing and nacelle is weakened.  

      
(a) dv2                                                                         (b) dv6 
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(c) dv7                                                                      (d) dv10 

Figure 1.8  Self-organizing map based on the design performance colored by the airfoil parameters 

 

    
(a) High –Cp,max design                                            (c) Low –Cp,max design 

Figure 1.9  Comparisons of airfoil lower surfaces and corresponding pressure distributions near the 

wing-pylon junction 

1.3.E. Extraction of design rules  

Rough set theory was originally developed by Pawlak.
8
 This mathematical method has been applied to 

human sense analysis because of its capability of handling ambiguous data and extracting underlying rules from 

that data. Because simulation data is deterministic, only the latter function was used. Rough set theory extracts 

design rules (decision rules) through the classification of set elements and set operations. Since details of the 

mathematical aspects of rough set theory can be found in the reference, the concept of applying rough set theory 

to an engineering design database are briefly explained: First, design samples with continuous variables are 

discretized to make logical set operation possible. Here, design variables are categorized into three levels. Each 

level is assigned to a different range of values of a design parameter and an objective function in such a way that 

the levels 1, 2 and 3 correspond to the minimum, middle and maximum ranges, respectively. For objective 

functions, clusters can be considered as a discrete category instead of these levels. Each design is then regarded 

as a deterministic rule describing conditions (design variables) and results (objective functions and clusters). 

Hence, all the data becomes a collection of rule sets. However, the rule sets still have as many conditions as the 

number of design variables, making it difficult for designers to understand them. Since some design variables do 

not affect the results or decisions, reducing the number of design variables required to obtain the same results is 

possible. This operation used for the purpose of obtaining minimum sets of conditions to determine the desired 

decision attributes is called ‘reduct,’ which makes obtaining simple rules with fewer conditions possible. Reduct 

is obtained from set operations. After obtaining reduced rule sets, the rule sets are filtered on the basis of the 

frequency to determine dominant rule sets. Finally, the meaning of the filtered rule sets is interpreted. Open 

software ROSSETA
27

 was used for the necessary calculations. 

The resulting rule appears, for example, ‘dv1(medium) AND dv2(large) AND dv5(medium) AND 

dv7(medium) AND dv9(small) AND dv10(small) => Cluster(C6), occurrence(10).’ It still appears complicated 

because the condition consists of a combination of five design parameters. In order to interpret the design rules 

more comprehensively, the frequency of appearance of small, medium and large for each design parameter was 

counted according to the sweet-spot cluster, small objective function values (CD,-Cp,max and wing weight), 

respectively, as summarized in Table 1.2.  For example, dv2-sweet reads +9. This signifies that the condition 
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dv2(large) appears 9 times among the rules to belong to the sweet spot cluster. In other words, to belong to the 

sweet spot cluster, dv2, dv4 and dv6 should be large and dv9 and dv10 should be small.  

The design knowledge discussed by using SOM in Section 3.3 can be summarized: a) Large dv2 improves 

CD and –Cp,  b) Small dv7 improves CD,  c) Large dv6 improves –Cp,  d) Small dv10 improves –Cp.  

Table 1.2 exhibits information consistent with these visualization results. Table 1.2, however, provides much 

more than the visualization. For example, dv4 should be large in order to belong to the sweet spot cluster, but it 

should be small in order to improve only the drag. Similarly, dv7 should be medium although it should be small 

in order to improve CD and –Cp. This illustrates the power of rough set theory. Visualization results depend on 

who looks at the figures and how deeply one reads. The result of rough set theory reduces oversights and reveals 

more detailed conditions. 

 Sweet Cd -Cp WW 

dv1 11 1 +1 5 

dv2 +9 +2 +6 +3 

dv3 8 -5 6 4 

dv4 +10 -3 +5 +11 

dv5 13 +8 +1 7 

dv6 +7 +6 +3 +3 

dv7 9 -5 -6 5 

dv8 2 -4 3 2 

dv9 -9 -2 -2 -3 

dv10 -14 -9 -8 -8 

Table 1.2  Frequency of appearance in design rules (+ indicates large, - indicates small and no sign 

indicates medium) 
 

 Conclusions 1.4.

We discussed two applications of MODE: MDO for the regional-jet wing and structural design optimization 

for the regional-jet horizontal tail. 

In the first application for the regional-jet wing MDO, ANOVA was first applied with the given set of design 

parameters for data mining. The results indicated which design parameters were influential. Next, visual data 

mining for the design space was performed using SOM. SOM divided the design space into clusters with 

specific design features. SOM obtained from the solutions uniformly sampled from the design space revealed 

that the sweet spot could exist. By comparing the SOM colored by influential design parameters found by 

ANOVA and the objective functions, several design rules were extracted. Finally, sufficient conditions 

belonging to the sweet spot cluster were extracted by rough set theory. Similarly sufficient conditions to 

improve each design objectives were extracted. The use of data mining will provide more knowledge about the 

design space and extract more information from the optimization problem. 
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