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Abstract

 

SLEUTH is a computational simulation model that uses adaptive cellular automata
to simulate the way cities grow and change their surrounding land uses. It has long
been known that models are of most value when calibrated, and that using back-
casting (testing against known prior data) is an effective calibration method.
SLEUTH’s calibration uses the brute force method: every possible combination and
permutation of its control parameters is tried, and the outcomes tested for their
success at replicating prior data. Of the SLEUTH calibration approaches tried so far,
there have been several suggested rules to follow during the brute force procedure
to deal with problems of tractability, most of which leave out many of the possible
parameter combinations. In this research, we instead attempt to create the complete
set of possible outcomes with the goal of examining them to select the optimum from
among the millions of possibilities. The self-organizing map (SOM) was used as a
data reduction method to pursue the isolation of the best parameter sets, and to
indicate which of the existing 13 calibration metrics used in SLEUTH are necessary
to arrive at the optimum. As a result, a new metric is proposed that will be of value
in future SLEUTH applications. The new measure combines seven of the current
measures, eight if land use is modeled, and is recommended as a way to make
SLEUTH applications more directly comparable, and to give superior modeling and
forecasting results.

 

1 Introduction

 

While the history of spatial modeling is filled with failed attempts to capture the dynam-
ics of urban systems and subsequent land use change (Lee 1973, 1994), increased
computational power and improved sources of spatial data have rekindled attempts to
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numerically model and simulate change. New techniques, including cellular automata
(CA) and agent-based modeling, have shown potential in representing and simulating
the complexity of the dynamic processes involved in urban growth and land use change,
and can provide an additional level of knowledge and understanding of spatial and
temporal change. One of the primary goals in the creation and use of these models is to
provide an extra layer of insight to policy makers and planners; using the models to
anticipate and forecast future changes or trends of development, to describe and assess
impacts of future development, and to explore the potential impacts of different policies
(Pettit et al. 2002, Verburg et al. 2002). The nature of this use for models requires that
they be robust in every aspect of their operation – the data used, the calibration and
mechanization of the model, and how change is forecast. Rarely are models tested with
such rigor that weaknesses or flaws in these aspects are discovered, yet with the goal of
impacting policy, models must be examined in more rigorous detail.

The calibration phase of modeling is one of, if not the most critical portions of a
modeling exercise (Batty 1977, Batty and Xie 1994, Landis and Zhang 1998). It is
during this time that the parameters which describe a system are determined, and upon
which all forecasting and scenario simulation is based. In some spatial models, the
‘goodness of fit’ of a set of parameters is determined by a set of spatial metrics, each
describing differently how accurately a set of parameters can replicate real-world histor-
ical patterns. While this provides a quantifiable measure of the ability of a parameter
set to replicate historical patterns, there are too many spatial measures available to
determine which measure is the appropriate one to use. This problem is compounded
even further when a suite of metrics are calculated. An example of this is the suite of
metrics that are calculated during the calibration of the SLEUTH urban growth model
(Clarke et al. 1997), and the different metrics or combination thereof that researchers
have used in different applications of the model (Silva and Clarke 2002, Yang and Lo
2003, Jantz et al. 2004). Robust modeling requires a clear consensus on what the meas-
ure of fit should be during calibration. To determine the optimal set of metrics for use in
calibration of the SLEUTH model an exhaustive calibration parameter set was generated
for three synthetic test data sets. Self-organizing maps (SOMs) (Kohonen 1995) were
then used to explore the multi-dimensional parameter and metric spaces for multiple
datasets that captured a wide array of spatial patterns. Analysis of these results led to
the development of a new metric for use in future SLEUTH model calibrations.

 

2 The SLEUTH Model

 

The SLEUTH urban growth and land use change model is a cellular automaton (CA)
model that has been widely used to model urbanization throughout various regions of
the United States and the world (Clarke et al. 1997, Silva and Clarke 2002, Esnard and
Yang 2002, Yang and Lo 2003, Jantz et al. 2004, Leão et al. 2004). The model has the
ability to simulate urban/non-urban dynamics as well as urban-land use dynamics,
although the latter has not been widely used; presumably due to the limitations of
gathering consistently classified land use data. The dual ability has led to the develop-
ment of two subcomponents within the framework of the model, one that models urban/
non-urban growth, the urban growth model (UGM), and the other that models land use
change dynamics (Deltatron). Regardless of which of these components is used, the
model has the same calibration routine. The input of land use data during calibration
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activates the Deltatron part of SLEUTH. Due to computational complexity, land use
was not a part of the testing in this study.

 

2.1 Required Data

 

SLEUTH is an acronym for the data required to calibrate and forecast in this urban
growth model – 

 

S

 

lope, 

 

L

 

and Use, 

 

E

 

xclusion, 

 

U

 

rban, 

 

T

 

ransportation, 

 

H

 

illshade. The
model requires topographic data in the form of Slope and Hillshade maps, although the
hillshade is used only for visualization purposes, and does not play a role in determining
model behavior. Land use with consistent classification for two time periods is needed
to implement the Deltatron submodel, but land use data are not necessary to simulate
urban growth. An Exclusion layer is used to place constraints on urban growth.
Through the Exclusion layer, a user can specify where urban growth is allowed to occur,
or where it is prohibited, for example in the ocean. This layer can also be a weighted
layer so that ‘resistances’ against growth can be put in place in an attempt to slow or
alter the rate of urbanization. Urban extent data is critical and necessary for this model.
At least four different temporal layers are needed, showing the extent of urban areas at
different points in time. These maps serve as the control points, against which the model
is calibrated, and a goodness of fit is determined. The last layer required for using
SLEUTH is Transportation. Historical maps of the transportation network show the
evolution of the transportation network through time. Since different types of roads
attract urban growth in different ways, roads in the transportation map are classified
according to access. Roads classified with a value of 100 are generally high access roads
such as freeways, interstates, and state routes. Primary local roads are given a weight of
50, and secondary roads are classified as 25. The creation of these input maps is typi-
cally done within a GIS, and then they are converted to digital images in GIF format
which are the actual data used in the model.

 

2.2 Urban Growth Model (UGM)

 

Calibration of SLEUTH produces a set of five parameters (coefficients), which describe
an individual growth characteristic, and that when combined with other characteristics,
can describe several different growth processes. For this model, the transition rules
between time periods are uniform across space, and are applied in a nested set of loops.
The outermost of the loops executes each growth period, while an inner loop executes
growth rules for a single year. Transition rules and initial conditions of urban areas and
land use at the start time are integral to the model because of how the calibration
process adapts the model to the local environment. Clarke and Gaydos (1998) describe
the initial condition set as the ‘seed’ layer, from which growth and change occur one
cell at a time, each cell acting independently of the others, until patterns emerge during
growth and the ‘organism’ learns more about its environment. The transition rules that
are implemented involve taking a cell at random and investigating the spatial properties
of that cell’s neighborhood, and then urbanizing the cell, depending on probabilities
influenced by other local characteristics (Clarke et al. 1997). Five coefficients (with
values 0 to 100 as integers) control the behavior of the system, and are predetermined
by the user at the onset of every model run (Clarke et al. 1997, Clarke and Gaydos
1998, Candau 2000). The parameters drive the four transition rules that simulate spon-
taneous (of suitable slope and distance from existing centers), diffusive (new growth
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centers), organic (infill and edge growth), and road influenced (a function of road grav-
ity and density) growth. These parameters are:

1.

 

Diffusion –

 

 Determines the overall dispersiveness of the outward distribution. This
parameter controls the number of times that a pixel will be randomly selected for
possible urbanization, and is calculated as:

diffusion value = (diffusion coefficient * 0.005) * 

 

√

 

((number of rows)

 

2

 

+ (number of columns)

 

2

 

)

This means that the maximum diffusion value will be half of the input image diagonal.
2.

 

Breed Coefficient –

 

 The likelihood that a newly generated detached settlement will
start on its own growth cycle.

3.

 

Spread Coefficient –

 

 Controls how much contagion diffusion radiates from existing
settlements.

4.

 

Slope Resistance Factor –

 

 Influences the likelihood of development on steep slopes.
5.

 

Road Gravity Factor –

 

 An attraction factor that draws new settlements towards and
along roads.

 

2.4 Model Calibration and Determining ‘Goodness of Fit’

 

By running the model in calibration mode, a set of control parameters is refined in the
sequential ‘brute-force’ calibration phases: coarse, fine and final calibrations (Silva and
Clarke 2002), although other methods of calibration, including the use of genetic algo-
rithms have been suggested and tested (Goldstein 2004). Initially the model was cali-
brated using hierarchical spatial resolutions, beginning with data of coarser resolution,
narrowing the range of the parameters that most accurately described the growth of the
system, and then using a finer resolution to narrow the parameter values to one distinct
set. Advances in computing power have allowed a more timely calibration, but it has
been shown that using the hierarchical spatial resolution may lead to parameter sets that
do not as accurately describe the growth of the system as a calibration at full data
resolution (Dietzel and Clarke 2004). The calibration process is done in three stages:
coarse, fine, and final. The coarse calibration begins with parsing the parameter space
into five areas and using the values of 1, 25, 50, 75, and 100 for each of the five
parameters. This gives 3,125 (5

 

5

 

) different parameter sets that are tested as initial con-
ditions to start the cellular model.

For each outcome, thirteen parameters are computed and used to determine the good-
ness of fit of the run to the known prior data. Runs returning the highest values indicate
that within the ranges given, there is a region of the five-dimensional parameter space
that may contain a peak in the model’s simulation ability. Results from the coarse
calibration are examined to determine the goodness of fit for each of the parameter sets.
Narrowing of the parameter set can be based on a variety of different goodness of fit
measures or their combinations. Despite numerous applications of SLEUTH all over the
world, there is no clear consensus as to which metrics are the appropriate ones to use during
the calibration process. In their application of SLEUTH to the Washington-Baltimore
metropolitan area, Jantz et al. (2004) used the 

 

compare

 

, 

 

population

 

, and 

 

Lee-Sallee

 

 statistics,
while in Atlanta, Yang and Lo (2003) used a weighted sum of all the metrics, and Silva and
Clarke (2002) used only the 

 

Lee-Sallee

 

 metric in modeling Porto and Lisbon. In past cases,
the 

 

Lee-Sallee

 

 (Lee and Sallee 1970) metric has often been used to determine which



 

Optimal Calibration of SLEUTH

 

33

 

© 2007 The Authors. Journal compilation © 2007 Blackwell Publishing Ltd

 

Transactions in GIS

 

, 2007, 11(1)

 

parameter sets best describe the replication of the historical datasets. 

 

Lee-Sallee

 

 is the
ratio of the intersection and the union of the simulated and actual urban areas, but
others, including the 

 

compare

 

 statistic and 

 

population

 

 statistics, have been used. Table 1
provides a description of the 14 metrics that can be used to determine the goodness
of fit of model calibration; they have a value range of 0.0 to 1.0, with 1 being a perfect fit.

After determining the parameter set that best fits the historical data, a range of
values bracketing that set of parameters is selected and the calibration is repeated. The
goodness of fit of the second calibration is evaluated and an even narrower range of
parameters is selected ideally with unit increments. The best fit of the parameters from
this third calibration are then the parameters that are used in forecasting urban growth
and land use change.

 

3 Determining the Optimal SLEUTH Metric (OSM)

 

To determine the optimal metrics for model calibration, three datasets were exhaustively
calibrated (meaning that every single combination of parameter values was tested)

Table 1 Metrics that can be used to evaluate the goodness of fit of the SLEUTH model

Metric Name Description

Product 
Compare

All other scores multiplied together 
Modeled population for final year/actual population for final year, or IF Pmodeled > 
Pactual {1 − (modeled population for final year/actual population for final year)}.

Pop Least squares regression score for modeled urbanization compared to actual 
urbanization for the control years

Edges 

Clusters

Least squares regression score for modeled urban edge count compared to 
actual urban edge count for the control years
Least squares regression score for modeled urban clustering compared to 
known urban clustering for the control years

Cluster Size Least squares regression score for modeled average urban cluster size 
compared to known average urban cluster size for the control years

Lee-Salle A shape index, a measurement of spatial fit between the model’s growth and 
the known urban extent for the control years

Slope Least squares regression of average slope for modeled urbanized cells 
compared to average slope of known urban cells for the control years

% Urban Least squares regression of percent of available pixels urbanized compared 
to the urbanized pixels for the control years

X-Mean Least squares regression of average x_values for modeled urbanized cells 
compared to average x_values of known urban cells for the control years 

Y-Mean Least squares regression of average y_values for modeled urbanized cells 
compared to average y_values of known urban cells for the control years

Rad Least squares regression of standard radius of the urban distribution, i.e. 
normalized standard deviation in x and y

F-Match A proportion of goodness of fit across landuse classes. {#_modeled_LU 
correct /(#_modeled_LU correct + #_modeled_LU wrong)}
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across their parameter spaces, and the resultant metrics analyzed. Two of the data sets
were representative of the two major spatial processes in urban growth, diffusion and
coalescence (Dietzel et al. 2005). A third dataset, the “demo city” data available with
SLEUTH as a test calibration data set, was used as a combination of the two with
greater (though still hypothetical) realism (Figure 1). Since these data only represent
urban growth, the land use-related 

 

F-match

 

 statistic was not calculated or evaluated. In
addition to this, the 

 

product

 

 metric was not used in the analysis since it is directly
dependent on all of the other metrics. It should be assumed that whenever land use data
is used, that the 

 

F-match

 

 statistic be used in calibration because it is specific to land use
change.

For the diffusive and coalescent datasets, no road or slope data were used: growth
occurred on an isotropic plane. Because of this, the slope and road gravity parameters
were held constant with a value of 1. The 

 

% slope

 

 metric was not included in the
analysis because there was no slope variation. These two datasets were exhaustively
calibrated for the diffusion, breed, and spread parameters (101

 

3

 

 or 1,030,301 different
parameter combinations), calculating all the metrics for each parameter set. For the
demo city data set, the parameter space was parsed into blocks of five (meaning that the
parameter values were tested in increments of five, from 0 to 100), and then exhaus-
tively calibrated (21

 

5

 

 or 4,084,101 parameter combinations), calculating all of the
metrics. Since the demo city dataset that comes with SLEUTH has both slope and

Figure 1 Three spatial datasets used in determining the optimal metrics during calibration
of the SLEUTH urban growth model. The top dataset represents coalescent growth, whereby
urban areas grow together. The middle dataset depicts a diffusive system where urban
growth diffuses outwards from a distinct core. The lower dataset represents both diffusion
and coalescence of an urban system
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transportation data, the slope and road gravity parameters were used during the cali-
bration of this dataset, and the 

 

% slope

 

 metric was calculated.
Upon running the calibration of each of these datasets, the result was an 18-dimen-

sional dataset that consisted of 13 metrics and five parameter values, with over a million
entries in each dimension. The sheer size of this dataset is not readily handled by most
of today’s statistical analysis packages. Due to this multitude of data, and the uncer-
tainty in understanding the meaning of the parameter values, standard statistical meth-
ods for examining the relationships between variables were not used. Instead it was
decided that data mining techniques, namely the self-organizing map (SOM) algorithm
(Kohonen 1995), would serve as a better analytical tool for determining which metrics
were related to one another, and which ones would be best in evaluating model fit.

 

3.1 SOM Creation and Clustering

 

The self-organizing map (SOM) is created using a neural network algorithm that is
based on unsupervised learning and is used to cluster data without knowing the class
memberships of the data (Kohonon 1995). This technique of data analysis and mining
has been widely applied with regard to data in other disciplines, including engineering,
economics, sociology, and library sciences (Kaski 1997), and provides a highly visual-
ized approach to see rough relations between variables (Vesanto 1997).

SOMs consist of a regular two-dimensional grid of neurons connected in the form
of either hexagons or rectangles. The grid of neurons is typically rectangular, but other
arrangements including toroids have also been used (Andreu et al. 1997). As in the case
of CA, the immediate neighbors are considered to be in the neighborhood of the adja-
cent neuron. There are various shapes for these neighborhoods; typically the bubble and
Gaussian neighborhoods are used, but there are several other variations. The number of
neurons in the grid is set at the beginning of the SOM creation, and this granularity does
have an impact on the accuracy and generalization capability of the SOM (Simula et al.
1999). Skupin (2002) created a relatively large SOM in order to “create a base config-
uration in which the SOM recognizes and geometrically preserves many of the finer
differences” among the training vectors. At the other extreme, a very small SOM more
suitable for clustering might have every neuron acting as one cell. With our purpose
being to visually examine the relations among variables as revealed on the component
planes, we chose to use 50,000 nodes, the maximum number of vectors possible in the
software used (Viscovery SOMline Plus). This necessarily involved sampling the param-
eter space output from the full exploration set. Training of the SOM is conducted in
two stages. In the first stage a relatively large neighborhood radius is used to train the
SOM. During the second stage the radius is decreased to train the SOM in a more
precise manner.

Visualization is one of the major advantages of the SOM. Results are presented in
a manner that make them readily understandable and in an easy method from which to
draw out relationships between variables. There are two main methods for the visual
analysis of SOMs: component and cluster analysis. Each of the independent variables
can be viewed as its own component plane. This provides information on the distribu-
tion of component values. By viewing several component planes together at the same
time, it is easy to see simple correlations among different components. Additionally, all
of the components can be visualized together by displaying the distances between the
vectors. This distance matrix is termed the 

 

U

 

-matrix (Ultsch 2003). In the 

 

U

 

-matrix,
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distances between the weight vectors of map units and their neighborhood are calcu-
lated. The map can then be displayed in two or three dimensions, and the relative
distances between adjacent map units can be seen. While there is no clear-cut method
aside from visual interpretation of SOMs, visualization of the component planes readily
allowed for the identification of relationships between the metrics used in calibrating
SLEUTH, making it possible to determine which were optimal for use in calibration.

 

3.2 Generating SOMs

 

Calibration of the model for the three datasets resulted in extremely large derivative
datasets, through which to mine (ranging from 1 million to 4.1 million entries for 18
dimensions). The magnitude of these datasets made them difficult to manipulate, and
no software that could prepare the data for the SOM routines was available for a
dataset of that size. Due to these limitations, and because of the maximum number of
vectors possible in the software, three random samples of the metric values for 50,000
different parameter sets were taken from the results of the coalescence, diffusion, and
demo city SLEUTH calibrations (nine samples total, three for each dataset). The sepa-
rate samples were taken to demonstrate that there were no significant differences among
SOMs from the different samples. Vectors on the metric values for 

 

compare

 

, 

 

population

 

,

 

edges

 

, 

 

clusters

 

, 

 

cluster size

 

, 

 

Lee Sallee

 

, 

 

% urban

 

, 

 

X-mean

 

, and 

 

Y-mean

 

 were then used
as input into Viscovery SOMine Plus (Eudaptic Software).

One method of evaluating the quality of the resulting SOM component plane map
is to calculate the quantization error over the input samples. Viscovery SOMine com-
putes two values, the average quantization error and the normalized distortion (Vesanto
and Sulkava 2002). The average quantization error represents the average distance
between the best matching units and the sample data vectors, i.e. the average square
distance of all records in the data set to their respective projections onto the map. The
normalized distortion is the degree of fit of the map with respect to the shape of the data
distribution. These values are reported in section 4.

Before data were put into the SOM, a test dataset from the coarse calibration was
used to determine the best values for the number of nodes and the map tension. We used
the maximum number of nodes (20,000) and established that the best visual interpreta-
tion corresponded to a tension setting (influence radius of the neighborhood). The
SOMs were then trained with 2,000 nodes, after preliminary tests were tried with
20,000 and 5,000. In the final application, where clustering was of greater importance,
we used a hexagonal grid, with 2,000 nodes in a mesh about 40 cells in y and about 50
cells in x. The value of increasing the number of nodes was negligible, so 2,000 were
used. At this size map tension was set at 0.5. Decreasing the tension resulted in a higher
quantization error or normalized distortion, while increasing it produced maps that
appeared overly smooth and regular. Average training time for the SOMs was 39 minutes
on a 2.5 GHz PC.

 

4 Results

 

Calibration of the three datasets used in the SLEUTH model led to data too extensive
for running the SOM algorithm in a timely manner with reasonable computing
resources. To overcome the computational limitations, three random samples of the
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output statistics were generated, and comparison between the samples shows that there
was no bias between any of the samples (Tables 2–4).

In training the SOM, both the quantization error (the average square distance of all
records in the data set to their respective projections onto the map) and the normalized
distortion (the fitting of the map with respect to the shape of the data distribution) were
calculated as a measure of the quality of the SOMs (Table 5, Figures 2 and 3). For the
diffusion SLEUTH dataset, the mean quantization error was 0.0333344, and the nor-
malized distortion of the SOM was 0.05597. For the coalescence and demo city
SLEUTH datasets, the mean quantization error was 0.02294 and 0.055534, with a
normalized distortion of 0.040915 and 0.085265.

The SOM algorithm was run for one of the three samples for each of the three
SLEUTH datasets  (Figures 4–6). From visual inspection we concluded that there was
no measurable difference between the three different samples taken from each of the
three SLEUTH datasets, but that there were similarities among the three SLEUTH data-
sets. The similarities are discussed in the next section.

Table 2 Summary statistics of the results from coalescence dataset calibration

Mean Standard Deviation Minimum Maximum

Compare 0.9258 0.0967 0.7102 1.0000
Population 0.6897 0.3559 0.0000 1.0000
Edges 0.3557 0.2572 0.0000 1.0000
Clusters 0.9151 0.1679 0.0000 1.0000
Cluster_size 0.2935 0.0585 0.1653 0.5472
Leesalee 0.9258 0.0967 0.7102 1.0000
%urban 0.0367 0.0670 0.0000 0.9999
Xmean 0.9425 0.0720 0.7843 1.0000
Ymean 0.4861 0.1725 0.0910 1.0000
Rad 0.9258 0.0967 0.7102 1.0000

Table 3 Summary statistics of the results from diffusion dataset calibration

Mean Standard Deviation Minimum Maximum

Compare 0.7735 0.1644 0.4844 0.9997
Population 0.5678 0.3219 0.0000 1.0000
Edges 0.7595 0.3159 0.0000 1.0000
Clusters 0.4100 0.1955 0.0000 1.0000
Cluster_size 0.0773 0.0240 0.0483 0.3197
Leesalee 0.7735 0.1644 0.4844 0.9997
%urban 0.6860 0.3186 0.0000 1.0000
Xmean 0.8232 0.1288 0.5732 0.9978
Ymean 0.0521 0.0790 0.0238 1.0000
Rad 0.7735 0.1644 0.4844 0.9997
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Table 4 Summary statistics of the results from demo city calibration

Mean Standard Deviation Minimum Maximum

Compare 0.1388 0.0702 0.1158 0.9969
Population 0.6972 0.1692 0.5544 1.0000
Edges 0.6197 0.2559 0.0000 1.0000
Clusters 0.8170 0.2838 0.0000 1.0000
Cluster_size 0.6078 0.3090 0.0000 1.0000
Leesalee 0.0918 0.0414 0.0645 0.4279
Slope 0.7360 0.1424 0.0001 1.0000
%urban 0.7205 0.1556 0.5695 1.0000
Xmean 0.6342 0.1908 0.0000 1.0000
Ymean 0.8973 0.0888 0.0000 1.0000
Rad 0.7608 0.1296 0.6512 1.0000

Table 5 Final quantization error and normalized distortion for data that the SOM algorithm
was applied from the diffusion, coalescence, and demo city SLEUTH datasets

SLEUTH Dataset Sample Quantization Error Normalized Distortion

Diffusion 1 0.033291 0.055780
2 0.033423 0.056271
3 0.033318 0.055859

Coalescence 1 0.023114 0.040988
2 0.022800 0.040942
3 0.022905 0.040814

Demo City 1 0.055079 0.084839
2 0.055809 0.085648
3 0.055713 0.085309

Figure 2 Trajectory of the mean quantization error during the SOM training process for the
calibration results from the diffusion, coalescence, and demo city SLEUTH datasets
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5 Discussion and Conclusions

 

This section discusses the interpretation of the SOM component plane visualizations.
Visual interpretation of the SOMs ultimately revealed that of the 12 spatial metrics that
SLEUTH calculates during the calibration process, only seven are needed to determine
the goodness of fit for the majority of urban systems (Table 6). If land use is modeled
in addition to urban growth, the 

 

F-match

 

 metric is additionally required since it is
specific to land use.

Figure 3 Trajectory of the mean normalized distortion during the SOM training process for
the calibration results from the diffusion, coalescence, and demo city SLEUTH datasets

Table 6 Summary of whether or not spatial metrics were necessary in the calibration of the
SLEUTH model

Metric Name

SLEUTH Dataset

Metric NeededDiffusion Coalescence Demo City

Compare Yes Yes Yes Yes
Population Yes Yes Yes Yes
Edges Yes Yes Yes Yes
Clusters Yes Yes Yes Yes
Cluster Size Yes Yes No No
Lee-Sallee No Yes No No
Slope N/A N/A Yes Yes
% Urban No No No No
X-mean Yes Yes Yes Yes
Y-mean Yes Yes Yes Yes
Rad No No No No
F-Match N/A N/A N/A If LU is modeled
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Figure 4 Component planes from the self-organizing maps of the metric space of the
diffusion SLEUTH dataset
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Figure 5 Component planes from the self-organizing maps of the metric space of the
coalescence SLEUTH dataset
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Figure 6 Component planes from the self-organizing maps of the metric space of the demo
city SLEUTH dataset
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Determination of which metrics were necessary was done through visual evaluation
of the resultant component planes from each SOM, for each sample from each SLEUTH
dataset, then comparing between the three datasets to determine what the necessary
metrics were. If the interpretation showed that there were multiple metrics that were
similar, then the metric that was first calculated by SLEUTH was deemed necessary, and
the redundant metric was disregarded. The choice of the first metric was arbitrary, and
the interchangeability within the redundancies was not explored.

For the diffusion dataset, the compare metric and the Lee-Sallee produced similar
results, so only the compare metric is needed in future work. Additionally the population,
% urban, and rad metrics had nearly identical component planes, so only the population
metric was necessary. In the case of the coalescence dataset, the population, % urban,
and rad metrics had similar component planes, so only the population metric was
needed. The demo city dataset had comparable component planes for the compare and
Lee-Sallee metrics, as well as for the population, cluster size, % urban, and rad metrics.

Based on the three datasets examined, which are believed to comprise the major
spatial patterns of urban growth, a goodness of fit metric, known as the OSM (optimal
SLEUTH metric, the product of the compare, population, edges, clusters, slope, X-mean,
and Y-mean metrics) will provide the most robust results for SLEUTH calibration.
Cluster size and Lee-Sallee were not included in this new metric because it was not clear
from the three datasets if these metrics produced unique results from other metrics
that SLEUTH calculates. This uncertainty led to them not being included in the sug-
gested metric.

Development of the OSM for use in the calibration of SLEUTH was the first
attempt to reach a clear conclusion as to what the best goodness of fit measure is for
this model. The method used attempted to evaluate the model under the major spatial
processes that are seen in urban growth data, diffusion and coalescence, and should be
viewed as a metric necessary for calculation during the calibration process.

While prior research (Silva and Clarke 2002, Yang and Lo 2003, Dietzel and Clarke
2004, Jantz et al. 2004) has suggested the use of a variety of metrics, it is now clear that
they have not been the optimal ones for determining a rigorous goodness of fit measure.
In most cases (Yang and Lo 2003, Dietzel and Clarke 2004, Jantz et al. 2004), the
method for determining goodness of fit was redundant, including two or more metrics
that were closely related, possibly biasing the results. Other cases (Silva and Clarke
2002) have used too few metrics in evaluating the goodness of fit, not including others
that would have made the calibration process more robust. Yet the development of the
OSM and the conclusion that one measure for the goodness of fit will suffice should not
be viewed as undermining previous research, as each has made its own contribution to
the development and use of the SLEUTH model.

This research has further demonstrated the importance of the calibration procedure
in spatial modeling, and how often it is a phase that is overlooked or regarded as being
insignificant for major research. While the ambition of modelers is to use their models
to impact policy and change, the models themselves must first be rigorously tested
before they are ready. This is no more evident than in the case of the SLEUTH model
which has been under development for a decade (Clarke et al. 2006), yet it has taken
this long to fully understand the calibration procedure and develop a faster and more
robust calibration method (Goldstein 2004). Only once there is complete understanding
of the mechanical nature of a model can it be used properly and reach its promise of
“honesty in modeling.”
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